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The average rate of growth of individual cells in 
a cellular structure: effect of the number of 
topological elements 
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Equations are derived for the average rate of growth or shrinkage of individual cells in two- 
and three-dimensional cellular structures, when the driving forces for displacement are the 
excess free energies associated with faces and edges. Curvature effects are neglected. It is 
shown that in three-dimensional structures, such as polycrystals, cells (grains) with fourteen 
or more faces tend to grow while those with thirteen or less faces tend to shrink, the rate of 
growth/shrinkage increasing as the number of faces increases/decreases. In two-dimensional 
structures, the threshold between growth and shrinkage is for cells with six sides. The specific 
behaviour of particular cells can be predicted from a simple geometrical construction and can 
be quite different from the behaviour of the average cell with the same number of edges. 

1. I n t r o d u c t i o n  
In a recent publication [1] a thermodynamic analysis 
of grain growth was developed and the driving forces 
responsible for it, which are associated with the excess 
free energy of  grain boundaries (faces) and triple lines 
(edges), were identified. It is convenient to adopt the 
following nomenclature: each force is identified by the 
topological element on which it acts and by the topo- 
logical element whose free energy is responsible for the 
force. For  example, an edge-face force acts on an 
edge and is due to the excess free energy of  a face 
connected to the edge (grain boundary free energy). 
Face- face  and edge-edge forces are due to the curva- 
ture of  the corresponding topological elements. In 
addition to these there are, in 3D-structures, ver tex-  
edge forces. In 2D-structures, the forces are edge-  
edge and ver tex-  edge. It will be assumed that no 
other driving forces (e.g. strain energy) are responsible 
for grain growth. 

The forces produce displacements of the topological 
elements with a velocity that can be taken as propor- 
tional to the forces (constant mobility). Topological 
changes occur during movement of  the topological 
elements which, in particular, lead to cell elimination 
and therefore to cell growth. The evolution of a given 
structure can be followed in a computer if the specific 
surface and line free energies are known and if the 
mobilities of  vertices, edges and faces are also known. 
Computer simulations along this line for 2D-struc- 
tures, acted by vertex-edge forces, are under progress 
and the results will be published elsewhere [2]. 

In this paper the average rate of  growth (or shrink- 
age) of individual cells in relation to the number of  
topological elements they possess (i.e. the number of  
faces in 3D and the number of edges in 2D) will be 
considered. It will be shown that in 2D-structures, 
cells with less than 6 sides tend to shrink while those 

with more than 6 sides grow; in 3D-structures the 
threshold "shr inkage-growth"  is for a number of 
faces between 13 and 14. Equations will be derived for 
the rate of growth of  average individual cells. 

The fact that cells with more than 6 sides tend to 
grow and those with less than 6 tend to shrink is 
generally accepted but is based on an argument due 
to Smith [3]. He assumed that the edges in a 2D- 
network meet at 120 ~ so as to equilibrate the vertex- 
edge forces at each vertex. The edges must then in 
general be curved, in such a way that the resulting 
edge-edge forces produce growth of  cells with more 
than 6 sides and shrinkage of  those with less than 
6 sides. Actual networks do not  in general have 120 ~ 
degrees in vertices, so that vertex-edge forces are 
also relevant to growth and cannot be ignored. 
Besides, the required curvature cannot occur in a 
(connected) network where, for example, a cell with 
7 sides may be adjacent to one with 8 sides. 

On the other hand, it was shown by Von Neumman 
[4] (see also [5]) that in a 2D soap froth, evolving by 
diffusion of the (incompressible) gas in the bubbles, 
the rate of  change of  the area A n of cells with n sides 
is proportional to (n - 6) 

dAn 
- k ( n  - 6) (1) 

dt 

In the situations that will be analysed here, growth 
occurs for other reasons and it is not expected, apriori, 
that Equation 1 still holds in those situations. 

The growth of 3D-structures has received much less 
attention. The result that we obtain for these struc- 
tures is perhaps expected, considering that natural 
structures such as polycrystals usually have an average 
number of  faces per cell, F, close to 13 to 14, (e.g. [6]), 
although cellular structures of the topological type of  
polycrystals may occur for any Fbetween 8 and oe [7]. 

0022-2461/86 $03.00 + .12 �9 1986 Chapman and Hall Ltd. 2509 



In the following analysis it will be assumed that 
face-face and edge-edge forces are not relevant in 
grain growth. This simplification is necessary because 
the consideration of curvature would considerably 
complicate the analysis and no simple correlation 
could be obtained between growth rate and the num- 
ber of edges or faces. The assumption can be justified 
if the mobilities of faces in 3D and of edges in 2D, are 
much larger than the mobilities of the other elements, 
so that they remain straight during growth. We con- 
sider in turn 2D- and 3D-structures. 

2. G r o w t h  in t w o - d i m e n s i o n a l  
s t r u c t u r e s  

The forces responsible for growth, under the simplifi- 
cation enunciated above, are vertex-edge forces 
exclusively. These are indicated in Fig. la for a cell 
with 5 sides. Each vertex is acted by three line tensions, 
~, along the edges connected at that vertex. Isotropy 
and homogeneity will be assumed so that e is the same 
for all edges. 

For any n (number of edges), the cells are in general 
of different sizes, are not regular polygons and the 
outer edges connected at each vertex of the cell are not 
regularly oriented. We make the simplifying assump- 
tion, justified in the Appendix, that the average 
behaviour of n-sided cells can be described in terms of 
a single, regular polygonal cell with n edges and with 
the outer edges symmetrically distributed, i.e. in the 
direction of the bisectors of the angles of the polygon 
(Fig. lb). This polygonal cell can be inscribed in a 
circle of radius R, which will be taken as a characteris- 
tic linear dimension of the cell. Since the internal angle 
in a regular n-gon is 

the resultant driving force, F~, on each vertex acts 
radially and has the value (positive if acting outwards) 

Fv = e ( 1 -  2 c o s 2 )  (3) 

For a constant mobility, My, of the vertices, the rate 
of change of R (velocity of the vertex) is 

dt  - eMv  1 

(a) 

- 2 cos 2 )  (4) 

(bl 

Figure 1 A pentagonal  cell in a 2D-network with three edges con- 
nected at each vertex. Driving forces, E, along the edges act on each 
vertex. The growth behaviour of  irregular cells with 5 sides [such as 
(a)] is described in terms of  an "average" regular cell with the outer 
edges directed along the bisectors of  the regular polygon, as shown 
in (b). 
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Figure 2 Rate of  change of A~/2 for polygonal cells with n sides in a 
2D-network acted by vertex edge forces. 

Simple geometry gives for the area of a n-gon of 
dimension R 

R 2 
An = - - n  sin an (5) 

2 

Combining Equations 4 and 5 yields 

dt  - e M v  sin - 2 cos 

with c~, given by Equation 2. The rate of growth is 
positive for n > 6, negative for n < 6 and zero for 
n = 6. Fig. 2 shows the plot o f ( sMv) - l (dA ln /Z /d t )  as a 
function of n. It tends to (re/2) l/z as n --* oo. 

In order to compare with Equation 1 for the soap 
froth we obtain from Equation 6 

dAn __ 2A1/2 dA1,/2 
d t  dt  - e M v R n  sin c~, 

•  2 c o s 2 )  (7) 

with ~, given by Equation 2. Equation 7 shows that 
the rate of growth, measured by the rate of increase of 
area, is proportional to the linear dimension R and 
does not vary linearly with n, as in Equation 1. The 
similarity between Equations 1 and 7 is only qualita- 
tive, in that they both predict a threshold at n -- 6 
between growth and shrinkage�9 It should also be 
noted that Equation 1 is valid for any cell with n-sides, 
while Equation 7 defines the behaviour of a regular 
cell with n-sides and symmetrical outer edges. 

3. G r o w t h  in t h r e e - d i m e n s i o n a l  
s t r u c t u r e s  

Assuming that faces remain planar (and edges straight) 
the forces responsible for growth are edge face and 
vertex-edge forces (Fig. 3). We consider an "average" 
polyhedron with F faces and assume that the faces are 
identical polygons with n sides, n being related to F 
through (e.g. [6]) 

12 
n = 6 - -  (8) 

F 
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Figure 3 One vertex (V) and the four connected edges (1 to 4) in a 
3D-network, with indication of  the forces ~ acting on the vertex and 
the forces '7 acting on edge 2. 

For fixed F, there is not a fixed value for the sum of 
the angles between faces connected at edges or between 
edges connected at vertices. For  example, if we trun- 
cate a regular cube at a vertex to obtain a triangular 
face in a polyhedron of 7 faces, we can vary the 
orientation of  the plane of  the cut and in this way vary 
the individual and average angles between faces and 
between edges. In the "average" polyhedron these 
angles are well defined and can be calculated as follows. 

Let cq, c~ z and ~3 be the angles between pairs of edges 
of  a polyhedron meeting at a vertex (cq is the angle 
between edges 2 and 3, etc.; Fig. 3). It is easily shown 
that the angle 01 between the faces of the polyhedron 
connected at edge 1 is given by 

cos01 = coscq - cos~2cos~3 (9) 
sin c~2 sin c~3 

and similarly for 02 and 03 . In the average F-edron all 
faces are regular n-gons, with n given by Equation 8. 
Therefore 

O~ i ~ O~ 2 
= ~3 = ~. = 2 ( 1  _ 2 )  

F -  3~(2~'] (10) 
T) 

and the angle 0 between two faces connected at an 
edge in the F-edron is, from Equation 9, 

cos 0 - cos c~, (11) 
1 + COS ~.  

If  the outer faces and edges are assumed to be sym- 
metrically connected to the reference polyhedron, 
then the outward driving force edge-face at each edge 
is 

Fe = 7 ( 1 -  2 c o s ~ )  (12) 

where ~ is the face excess free energy per unit area 
(surface tension); and the outward force edge vertex 
at each vertex is 

Fv = e(1 - 3 cos fl) (13) 

where e is the edge tension and/7 is the angle between 
an edge of  the polyhedron and the direction of  the 
outer edge connected at the same vertex. This angle 
can be related to c~,, the angle between two edges of 
the polyhedron at a vertex 

2cosc~, = 3cos  2 f l -  1 (14) 

Therefore the outward driving force on a vertex can 
be written as 

Fv = e[1 - (3)1;3(1 + 2 cos c~,) li2] (15) 

Both F e and Fv change sign when F changes. This 
happens, in both cases, for cos ~, = - 1/3, leading to 
F = 13.3973 (h = 5.1043). This value of  F w a s  indi- 
cated by Smith [6] as defining an "equilibrium" poly- 
hedron. 

It is fairly easy to obtain equations for the rate of 
change of  the dimensions of the average cell with F 
faces under these driving forces. We consider first 
growth governed by the driving forces Fe only (Fig. 3). 
Denoting by D the distance of an edge to the centroid 
of the regular F-edron we may write 

dD 
= MeFe (16) 

dt 

The polyhedron can be divided into F regular pyra- 
mids with n lateral faces, D being the height of  these 
faces. The solid angle at the vertex of the pyramid is 
4rt/F, which corresponds to an average angle 05 between 
the axis of the pyramid and the straight lines through 
the vertex of  the pyramid and lying on lateral faces; 05 
is given by 

2 
cos 05 = 1 - -  (17) 

F 

From this, we obtain for the volume of  the polyhedron 

V = 8 D 3 ( 1 - 2 ) 2 ( 1 - 1 )  tan~-n (18) 

which gives an error of  5% when applied to the 
(regular) cube (D = a/(2) m, a-cube edge). The quan- 
tity VII3/D given by Equation 18 is a slowly varying 
function of F (between 0.909 and 0.832 for F between 
4 and oo). Therefore for grain growth controlled by 
edge face forces we have 

d V 1/3 i/3 

dt 
2Mey {[(1-2)2(1- l) tan~] 

- -  - -  ( 1 9 )  x 1 - 2 + 2 c o s c ~ ,  

with n given by Equation 8 and en by Equation 10. The 
plot of  d Vll3/dt is shown in Fig. 4, curve E. 

A similar analysis can be undertaken for vertex 
controlled cell growth (Fig. 3b). In this case the 
characteristic dimension, D' ,  is the distance of the 
vertices of  the cell to its centroid. The relation between 
V and D '  is 

V = 8D '3[1  - 1 - t a n -  
n 

x 1 + sin 2 05 tan ; - -  (20) 
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Figure 4 Rate of  change of  V I/3 for polyhedral cells with F faces in 
a 3D-network acted by edge-face forces (curve E) and vertex-edge 
forces (curve V). 

with q~ given by Equation 17. Equation 20 gives an 
error of  1% when applied to the (regular) cube (D'  = 
a31/2/2). The plot of dV]/3/dt for vertex controlled 
growth is also shown in Fig. 4, curve V. It is obtained 
by combining Equations 15 and 20 with 

dD'/dt = Mvkv (21) 

The more general case of  driving forces acting both 
on edges and vertices is difficult to analyse because 
compatibility conditions on the displacements of  the 
two types of  topological elements have to be intro- 
duced. Besides, the global kinetics would depend on 
the ratio MeT/Mv~, a quantity that is difficult to esti- 
mate. 

4 .  C o n c l u d i n g  r e m a r k s  
Equations were obtained for the average rate of  
growth of individual cells in a cellular structure, the 
growth being governed by the excess free energy asso- 
ciated with the various topological elements. The 
equations were based on a somewhat loose averaging 
procedure. Nevertheless the results give some insight 
on the kinetics of growth and explain the tendency of 
polycrystals to have average values, F, of Fclose to 14. 
It should be noted, however, that several models [8] of  
solidification of  a liquid into a polycrystal lead to 
values of  P close to 14, and this could also explain the 
experimentally observed values of  F. 

Cells with more than 14 faces tend to grow and 
those with less than 14 faces tend to shrink. In two- 
dimensions, the critical value of  the number of  sides is 
6. These results explain the experimental observation 
that large cells tend to have many sides and vice versa. 
It is also expected that the more regular cells (more 
uniform distribution of angles and more equiaxial) are 
those that change at a slower rate (see Appendix). 

The growth of a cellular s t ructure involves topo- 
logical changes that were not considered in the present 
discussion. The actual cells are not regular and during 
growth may change their topology through a neigh- 

bour switching operation or through the removal of 
the simpler cells (those with n = 3 in 2D and F = 4 
in 3D). The equations obtained give the average rate 
of  change of dimensions of  cells in classes with a given 
n or F while they remain within the same class. The 
complications that result from the topological changes 
are difficult to analyse and can only  be characterized 
in a complete computer simulation of  the process of 
growth. This procedure can also be used to check the 
accuracy of  the equations derived in the present paper. 

A p p e n d i x  
Evolution of polygonal cells acted by vertex 
forces 
The displacement of a vertex in a cell of given geo- 
metry depends on the orientation of the outer edge 
connected at the vertex. The final position of the 
vertex can be determined graphically by considering 
three equal vectors along the edges and finding their 
resultant. It is easy to show that as the orientation of 
the outer edge is varied (within the outer angle defined 
by the two other edges), the locus of the final positions 
of  the vertex is in an arc of circle, between the two 
edges of  the cell, and with its centre C on the bisector 
of the two edges, as shown in Fig. 5. The displacement 
of the vertex in time A t is My A tlYi ~il where ~i are the 
line tensions with I~il = e. Using this construction it is 
straightforward to find the permissible shapes that 
result from the forces on the vertices of a given cell. 
Fig. 6 shows the locii of  the final positions of  the 
vertices of two hexagonal cells. Using this procedure 
we arrived at the following conclusions, as regards the 
effect of the orientation of the outer edges and the 
effect of  the internal angles and shape of the cell, on 
the rate dAl,/2/dt. 

(a) For any n, it is always possible to choose the 
orientation of the outer edges so as to induce a 
decrease in area. It is enough to take the edges as in the 
example of  Fig. 6a (dashed lines). 

(b) In regular polygons, the largest final area is 
obtained for orientations of the outer edges in the 
directions of the bisectors. This is not in general true 
for non-regular polygons. 

V 
I 

I 

Figure 5 The edges 1, 2 belong to a cell and meet at vertex V; edge 
3 is the outer edge connected at V. The arc of  circle is the locus of  
the (finite) displacements of  V acted by the (equal) line tensions ~,  
~2 and ~3 in the direction of the outer edge. The centre C of  the circle 
is in the bisector of  ~ and ~2. Position V' corresponds to the 
orientation of  the outer edge indicated by the dashed line. 
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Figure 6 The locus of  the final positions of  the vertices of  an hexa- 
gonal cell: (a) for a regular hexagon, showing a "final" cell of  
smaller area; (b) for an irregular hexagon, showing a "final" cell of  
larger area. 

(c) When the perimeter of a polygon increases at 
constant internal angles, constant area, and constant 
orientation of the outer edges, the absolute value of 
dA~/R/dt increases. Equiaxility therefore decreases the 
absolute value of the rate of change of AI./2. 

(d) Large internal angles tend to originate an 
increase in area (or a smaller decrease), particularly if 
the associated edges are long. For example, it is 
possible to have an increase in the area of the irregular 
hexagon shown in Fig. 6b by the dashed lines. 

(e) If an n-cell contains an edge much shorter than 
the others, the corresponding dA1/2/dt approaches that 
of a cell with (n - 1) sides which is obtained by 
extending the edges adjacent to the short edge. This 
confirms the conclusion that equiaxiality decreases the 
absolute value of the rate of change of linear dimen- 
sions. 

It follows that the rate dA~/R/dt can be larger or 
smaller than that for the regular polygon with the 
same n. The average value of dA1/2/dt for each n could 
in principle be calculated by considering all cells with 
n sides and all orientations of the outer edges. Even if 
the problem could be solved, it would probably not 
correspond to the average cell behaviour in a network 
because there are topological restrictions on the distri- 
bution of angles in a network related to the fact that 
some cell adjacencies are forbidden [1]. A correct 
determination of the average rate of change of dimen- 
sions should take these topological limitations into 
account; the problem is complex, which justifies the 
simplified averaging procedure used. 
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